IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MIT-33, NO. 7, JULY 1985

635

Short Papers

The Finite-Element Method for Finding Modes of
Dielectric-Loaded Cavities

J. P. WEBB, MEMBER, IEEE

Abstract — A three-dimensional high-order finite-element scheme is pro-
posed for finding the modes of dielectric-loaded cavities of arbitrary shape.
New light is shed on the presence of spurious solutions. Results for an
empty rectangular box are compared with exact solutions. A loaded rectan-
gular box is also analyzed.

I. INTRODUCTION

The analysis of dielectric-loaded cavities is important in the
design of microwave filters [1] and ovens [2]. For all but the
simplest three-dimensional configurations, this analysis must be
done numerically. The lowest mode of a dilectric-loaded cavity
has been determined by methods based on regular grid discretiza-
tions of Maxwell’s equations [3],[4] and by a finite-element
program designed for the solution of deterministic, rather than
eigenvalue, problems [5]. More recently, Hara et al. [6] have used
finite elements with an eigenvalue approach to find the modes of
empty accelerator cavities.

The finite-element analysis of high-frequency electromagnetic
problems is well known to be plagued by the occurrence of
nonphysical, or spurious, solutions [7]-[10]. Such modes occur in
abundance in the three-dimensional case, and, in [6], a modified
functional is used to improve the situation by reducing the
number of the spurious modes in the range of interest.

In this paper, the method of [6] is extended to allow for the
solution of dielectric-loaded cavities. The variational formulation
is given in Section II, where a more careful consideration of the
modified functional provides a deeper understanding of the
spurious modes produced. Section III gives a brief outline of the
high-order tetrahedral elements. Results for the empty rectangu-
lar box are presented in Section IV, and for the dielectric-loaded
box in Section V. A few remarks on the computational details are
given in Section VI.

II.  VARIATIONAL FORMULATION

Let H(r) be the complex phasor magnetic field inside a cavity
£, containing lossless materials with relative permittivity €(r) and
relative permeability p =1. Both materials properties are scalar
functions of position only. Time dependence e/“’ is assumed.
Although in general H is complex, the resonant fields of a
lossless, closed cavity are purely real, and henceforth H will be
assumed to be real.

Let the boundary of £, 92, be divided into two parts, 9,
and 3Q,. On 99Q,, the magnetic field satisfies the perfect
magnetic conductor (Dirichlet) condition

HAn=0

&)
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where a is the unit outward normal to the surface dQ. On 9%,
the magnetic field is free to vary.

Then the resonant modes of the cavity are the stationary points
H of the functional

)

(See, for example, [11].) The corresponding values of k are the
normalized resonant frequencies of the cavity

F(H) =fﬂ{%(v AH) - k2H2} av.

k=2 (3)
where ¢ is the velocity of light in free space. Furthermore, each
modal field satisfies the perfect electric conductor (Neumann)
boundary condition

- (VAH)AR=0 )

This variational result has been used as the basic of a finite-ele-
ment method for the determination of the modes of an empty
cavity [6]. However, the method produces spurious modes along
with the physical results, making the identification of the latter
difficult. For this reason, the addition of a penalty term has been
suggested [6] to enforce the solenoidality of the magnetic flux
density (or, what amounts to the same thing in this case, the
magnetic field). The modified functional is

on IRy .

(%)

where s is a positive real number. The use of this functional is
found to reduce the number of spurious modes in the range of
interest; furthermore, as s is increased, the spurious frequeneies
increase in value and can be forced up out of the range of
interest.

More light may be shed on these facts by considering the
Euler-Lagrange equation of (5). Let us first impose the boundary
condition

(6)

Then it may readily be shown that the stationary points H of (5)
subject to (1) and (6) are the solutions to the equations

Fm(H)=F(H)+sfsx(v~H)de

H-n=0 on 99,.

VA %v/\ H-svyv-H-KH=0 inQ (7a)
HAn=0 ondQ, (7b)
v-H=0 ondQ, (%)
H-n=0 onaQ, (7d)

(VAH)AR=0 ondQ. (7¢)

To understand the solutions of (7), we define two additional
sets of equations

VA %v/\ H-KH=0 inQ (82)
HAn=0 on 39, (8b)
(VAH)AR=0 on dQy (8¢)
k2>0 (84)
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Fig. 1. A second-order tetrahedron, showing the ten interpolation nodes.
and
svv-H+k*H=0 inQ (92)
A-n=0 ondQy (9b)
v-H=0 on 9, (%)
k2> 0. (9d)

The solutions of (8) are the correct physical modes of the
dielectric-loaded cavity with a perfect magnetic conductor along
3Q,, and a perfect electric conductor along dy; (8a) is the
curl-curl equation deducible directly from the time-harmonic
Maxwell’s equations.

The solutions of (9) have no obvious physical significance.

It is shown in the Appendix that each physical solution 4,k
(that is, each solution to (8)) is also a solution to (7), and hence a
stationary point of the modified functional (5). Similarly, each
solution to (9) is a stationary point of the modified functional. So
the modified functional possesses two sets of stationary points: a)
one set are strictly solenoidal and are the physical modes of the
cavity; b) the second set, governed by (9), are strictly irrotational
nonphysical modes whose resonant frequencies increase linearly
with the square root of the parameter s. These are the spurious
modes previously noted [6],{7]. As s approaches zero, there will
be infinitely many of these modes with vanishingly small
frequency—this is what causes the trouble with the unmodified
(s = 0) functional.

(It remains to be proven that the modified functional possesses
no other solutions; the numerical results of the following sections
suggest that it does not.)

Note that all of the above holds equally if we want to compute
the electric field in a cavity containing variable-permeability
materials, with a relative permittivity of 1.0; the functional is the
one given by (2) and (5), but with € replacing p and E replac-
ing H.

I

The stationary points (H, k) of (5) may be found approxi-
mately by the finite-element method. The following is similar to
the numerical procedure given in more detail in [5].

The region 2 is broken into tetrahedral finite elements (see
Fig. 1). In each element, the field H is approximated by a set of
polynomials complete to order n (orders 1 to 3 have been
implemented). Thus, for an nth -order tetrahedron

H(r)= 3 Hya,(5)

FINITE-ELEMENT SOLUTION

(10)
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where
ng={(n+1)(n+2)(n+3)/6

§=(§1,§2,§3,§4)

simplex coordinates of point r

a,,(t) = appropriate interpolation polynomials.

For details of the simplex coordinates and interpolation poly-
nomials, see [12]. H,, is the field at the mth node of the element;
the nodes are spread through the element in a regular way (see
Fig. 1).

The field is expressed in this manner in each element and
nodal values are matched up at element interfaces. Then boundary
conditions of the kind (1) and (6) are imposed. Currently, these
may only be imposed on planes perpendicular to a Cartesian
coordinate axis of the problem, but future developments will
allow for more general boundaries. Suppose there are, finally, a
total of N free field components at all the nodes of the region .
These free field components can be represented by a column
vector H,, and (5) becomes (after some algebra)

FM =HchHc+SHchHc_ kZHLTI’/SHc (11)
where W, W,, and W, are N X N symmetric matrices.
Now since F,, must be stationary with respect to H,
(W, +sW,) H = kW, H, (12)

which is a generalized algebraic eigenvalue problem for (H, k?).

IV. Test Case: EMPTY BOX

As a simple example, consider the problem of finding the
resonant modes of the empty rectangular cavity & shown in Fig.
2. The walls dQ of the cavity are perfectly conducting, so the
governing equations for the electric field are

VAVE-KE=0 inQ (132)
EAnn=0 on9Q=99,. (13b)

The analytical solution to this problem is well known [13]; it
consists of two sets of modes labelled TE,, , and TM,,, . The
first set of modes have no z-component of electric field; the
second set, no z-component of magnetic field. m, »n, and p are

nonnegative integers. The corresponding resonant frequencies are
2 2

2
k2=7r2(m—+n—+p—).

at b

(14)

In solving (13) with the electric-field version of the functional (5),
we compute also a set of spurious solutions, whose governing
equations are (from (9))

sYV-E+kE=0
v-E=0

in
on 392 = 9Q,.

(152)
(15b)

The analytical solution to this problem may readily be found; it

consists of a single set of modes labelled S, ,, with correspond-
ing resonant frequencies given by

2 2 2
k2=sw2(Ln—+n—+‘p— . 16

a® p? P (16)

The modes SZ, , arc only nonzero if m, n, and p are all positive.

The problem was solved using the finite-element method de-

scribed above, with 135 second-order tetrahedra. Table I gives the

first six modes computed from this model, together with the
analytical solution from (14) and (16).
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Fig. 2. The first six computed values of k2 (O), plotted against the parameters s, for an empty rectangular box (inset); analytic results

(

TABLE I
RESONANT FREQUENCIES k (rads/m) FOR THE FIRST S1x MODES
OF THE RECTANGULAR CAVITY SHOWN IN FIG. 2; s = 0.4

) were obtained from (14) and (16).

Finite Mode Analytical Percent
Element Solution Error
Solution

2.8946 S‘iu 2.8686 0.9
3.279%9 TMllO 3.2716 0.3
3.7843 TE 01 3.7757 0.2
3.7954 9*2‘311 3.6733 3.3
4.0320 LYY 4.0232 0.2
4.0973 C 3.9760 3.1

Fig. 2 shows the effect of varying s: the spurious values of k?
. vary linearly with s, while the true modes are unaffected by s.

V. DIELECTRIC-LOADED Box

An irreducibly three-dimensional problem shown in Fig. 3 was
solved using 135 second-order tetrahedra, at s =1.5, for a variety
of values of the ratio u/c. Two symmetry plans were used, one
perpendicular to the x-axis and one perpendicular to the z-axis.
The magnetic field was found.

N
'
i R ¥ /
- ? y
VR V2
< —

a/2

Fig. 3. One quarter of the problem of a dielectric block (relative permittivity
16) in rectangular box. a=1.0m, b=0.6 m, c=02m, t=025m, V=0.35
m, » varies from 0.0 m to 0.2 m. The walls x = 0 and z =0 are planes of
symmetry; the remaining walls of the box are perfect conductors.

In Fig. 4, the resonant frequencies of the first six modes are
plotted against u /c. Table II compares the resonant frequency of
the lowest mode, at u/c = 0.375, with values obtained by differ-
ent methods. Note that, with the magnetic-field boundary condi-
tions on the conducting cavity walls, the spurious modes are
different to those of Section IV but just as strmghtforward to
compute in closed form. THey are labelled S, »» Where now onie
of the indices m, n, or p may be zero.

VI. COMPUTATIONAL REMARKS

The algebraic eigenvalue problem (12) is large and sparse and
only the first eigenpairs are required. An efficient method for this
type of problem is that of trace minimization [14], and a solver
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Fig. 4. The resonant frequencies k of the first six modes of a dielectric-loaded box (Fig. 3); s =1.5.

TABLE II
RESONANT FREQUENCIES k (rads/m) OF THE LOWEST MODE OF
THE DIELECTRIC-LOADED Box SHOWN IN FIG. 3, WITH
u/c=0375 s=15

Source Resonant Estimated
Frequency Percent
Error
Ref. [3] 4,907 8.0
Ref. [4) 5.529 < 1.0
Ref. [5) 5.580
This Method 5.621 < 1.0

based on this technique was built and used to obtain the above
results. Typically, the matrices in (12) had dimensions of 400-500,
but because the trace minimization algorithm requires only the
nonzeros of the matrices to be stored in core, it was possible to
obtain the solutions on minicomputers (PERQ and CODATA).

VII. CONCLUSIONS

High-order tetrahedral finite elements have been used to find
the first few resonant modes of dielectric-loaded cavities. The
modified functional [6] has been shown to possess a second set of
nonphysical modes in addition to the physical solutions.

The modified functional approach, although enabling solutions
to be computed, still has the undesirable feature that the opti-
mum value of the parameter s for a particular problem is
unknown, and must be guessed by the user before the computa-

tion begins, or determined by repeated solution (an expensive
process).

APPENDIX
PROOF THAT A SOLUTION TO (8) IS ALSO A SOLUTION TO (7)

Let H, k? be a solution to (8). Then, from (8d), since k2> 0,
(8a) gives

v-H=0 in®

and it follows that H, k? also satisfies (7a), (7b), (7c), and (7e).
Furthermore_

(VAH)AR=0 ondQy =
(%—VAI?)A"=0 on 9Q, =
1 .
(V/\:V/\H)-n=0 on 30y =
H-n=0 on 92, (from (8a))
and so H satisfies (7d) also.
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Large-Signal Microwave Performance Prediction of
Dual-Gate GaAs MESFET Using an Efficient and
Accurate Model

ASHER MADIJAR, SENIOR MEMBER, IEEE,
AND JONA DREIFUSS

Abstract —This paper presents a microwave large-signal model for the
dual-gate MESFET. The model enables prediction of device performance
in small-signal and large-signal circuits. The model is an extension of a
previously developed model for the ordinary MESFET. It relies on basic
principles, thus correlating the device geometry and physical parameters to
its performance. The speed and accuracy of the model are demonstrated by
calculating three types of device performances: de curves, small-signal
scattering parameters, and large-signal simulation of an amplifier. Good
agreement was achieved between calculated and measured performance.
The computed results are presented for comparison only, and no attempt
was made to present a comprehensive analysis of the device performance.

I. INTRODUCTION

Increasingly, dual-gate GaAs MESFET devices are finding use
in microwave circuits. In recent years, many researchers have

investigated the device properties and applications. The most

useful applications which have emerged thus far are: AGC
amplifiers, mixers (including self-oscillating) [1]-[3], active phase
shifters [2], [4], frequency multipliers [2], [S], power
combiners /dividers [6], and up converters {7].

Small-signal circuits can be conveniently analyzed and design-
ed by use of measured scattering parameters. However, in most
of the above applications, the device operates in a large-signal
mode. Large-signal circuits can be built, of course, experimen-
tally, but this involves much “cut and try” cffort. The best
approach to nonlinear circuit development is to design the circuit
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Fig. 1. Dual-gate MESFET cross-section view.

theoretically (approximate design is usually acceptable), build it,
and fine-tune it to the desired performance. This latter approach
requires an efficient and reasonably accurate model for the
device.

This paper presents such a model for the dual-gate MESFET.
Its speed and . accuracy are demonstrated by calculating the
device performance and comparing it to the measured perfor-
mance presented in the manufacturer’s data sheet.

II. DEvVICE STRUCTURE

The physical structure of the device is presented in Fig. 1. As
shown, the structure is similar to an ordinary FET except for the
two gates. The device is built on a semi-insulating substrate of
GaAs. An n-type epitaxial active layer is grown on the substrate,
and on top of it an n* layer. The source and drain electrodes
form ohmic contacts to the GaAs material, while the two gate
electrodes form Schottky-barrier junctions.

From Fig. 1, it is obvious that this device is basically a
combination of two ordinary MESFET’s. In fact, Asai et al. [8],
[9] have shown that electrically this device is a cascade connec-
tion of two ordinary FET’s, the first in a common-source mode
and the second in a common-gate mode. (See Fig. 3(a)).

III. THE MODEL

An efficient and accurate microwave large-signal model for the
ordinary MESFET was developed by Madjar and Rosenbaum
[10)-[12]. This model was developed using basic principles,
namely, solving the electric-field problem in the device in an
approximate analytical fashion. This approach yielded a model
which has advantages in all respects: it is fast, it related the
physical device parameters to its electrical performance, and it
has reasonable accuracy. The exact details of the model are
presented in the above references. )

The circuit diagram of an ordinary assembled FET is presented
in Fig. 2. The “box” in the center of the diagram represents the
active part of the device. This part is charactenzed by the
computer model as follows:

stc(t) dVps(1)

I () = GVSG—2= + GVDS—23* (1)

L,(t)=1I,,+ DVSG ng(t) + DVDS—25 -2 Vps (1) )
t dt
I, and the four capacitive coefficients are functions of Vg, Vg
and are computed by the model.
The other components in Fig. 2 are parasitic elements, which
are undesirable but must be taken into account. The two diodes
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