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Short Papers .-

The Finite-Element Method for Finding Modes of
Dielectric-Imaded Cavities

J. P. WEBB, MSMRER, IEEE

Mrstruct —A three-dimensional high-order finite-element scheme is pro-

posed for finding the modes of dielectric-loaded cavities of arbitrary shape.

New light is shed on the presence of spurious solutions. Results for an

empty rectangular box are compared with exact solutions, A loaded rectan-

gular box is also analyzed.

I. INTRODUCTION

The analysis of dielectric-loaded cavities is important in the
design of microwave filters [1] and ovens [2]. For all but the
simplest three-dimensional configurations, this analysis must be
done numerically. The lowest mode of a dilectic-loaded cavity
has been determined by methods based on regular grid discretiza-
tions of Maxwell’s equations [3], [4] and by a finite-element
program designed for the solution of deterministic, rather than
eigenvalue, problems [5]. More recently, Hara et al. [6] have used

finite elements with an eigenvalue approach to find the modes of

empty accelerator cavities.

The finite-element analysis of high-frequency electromagnetic
problems is well known to be plagued by the occurrence of

nonphysical, or spurious, solutions [7]-[10]. Such modes occur in

abundance in the three-dimensional case, and, in [6], a modified

functional is used to improve the situation by reducing the

number of the spurious modes in the range of interest.

In this paper, the method of [6] is extended to allow for the

solution of dielectric-loaded cavities. The variational formulation

is given in Section II, where a more careful consideration of the

modified functional provides a deeper understanding of the

spurious modes produced. Section III gives a brief outline of the

high-order tetrahedral elements. Results for the empty rectangu-

lar box are presented in Section IV, and for the dielectric-loaded

box in Section V. A few remarks on the computational details are

given in Section VI.

II. VARIATIONAL FOIUWULATION

Let H(r) be the complex phasor magnetic field inside a cavity

Q, containing lossless materials with relative permittivity C( r) and

relative permeability p =1. Both materials properties are scalar

functions of position only. Time dependence eJ”* is assumed.

Although in general H is complex, the resonant fields of a

lossless, closed cavity are purely real, and henceforth H will be

assumed to be real.

Let the boundary of Q, X2, be divided into two parts, dfl~

md a$JN. On aa~, the magnetic field satisfies the perfect

magnetic conductor (Dirichlet) condition

I? An=O (1)
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where n is the unit outward normal to the surface W3. On afl~,

the magnetic field is free to vary.

Then the resonant modes of the cavity are the stationary points

fi of the functional

)
~1(~) =L{:(V A~)2–k2H2 (fV. (2)

(See, for example, [11].) The corresponding values of k are the

normalized resonant frequencies of the cavity

k=; (3)

where c is the velocity of light in free space. Furthermore, each

modal field satisfies the perfect electric conductor (Neumann)

boundary condition

(V AH)An=O ondfl~. (4)

This variational result has been used as the basic of a finite-ele-

ment method for the determination of the modes of an empty

cavity [6]. However, the method produces spurious modes along

with the physical results, making the identification of the latter

difficult. For this reason, the addition of a penalty term has been

suggested [6] to enforce the solenoidality of the magnetic flux

density (or, what amounts to the same thing in this case, the

magnetic field). The modified functional is

Fm(H)=F(H)+ s~(v.H)*dv (5)

where s is a positive real n~ber. The use of this functional is

found to reduce the number of spurious modes @ the range of

interest; fur~ermore, as s is increased, the sprious frequeneiies

increase in value and can be f~rced up out of the range of

interest.

More light :may be shed on these facts by considering the

Euler-Lagrange equation of (5). Let us first impose the boundary

condition

H,n=O on aq. (6)

Then it may readily be shown that the stationary points fi of (5)

subject to (1) and (6) are the solutions to the equations

VA +A H–sVV.H–k2H=0 irt~ (7a)

HAP=() on ai2D (71b)

V“H=O on af2D (7c)

fi. n=o on dfl~ (7cI)

(V Afi)An=O on tK2N. (7e)

To understand the solutions of (7), we define two additional

sets of equations

vA:v Aii-k2ii=0 infl (8zt)

fiAn=O on af2D (8b)

(v Afi)An=O OndQN ~8c)

k2>0 (8d)
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where

Vertex 3

Fig. 1. A second-order tetrahedron, showing the ten interpolation nodes.

and

svv. H+k2H=0 in Q (9+

il. n=O on aq (9b)

V.fi=o on af2D (9C)

k2 >0. (9d)

The solutions of (8) are the correct physical modes of the

dielectric-loaded cavity with a perfect magnetic conductor along

M2~ and a perfect electric conductor along dfl~; (8a) is the

curl–curl equation deducible directly from the time-harmonic

Maxwell’s equations.

The solutions of (9) have no obvious physical significance.

It is shown in the Appendix that each physical solution (R, k2 )

(that is, each solution to (8)) is also a solution to (7), and hence a

stationary point of the modified functional (5). Similarly, each

solution to(9) is a stationary point of the modified functional. So

the modified functional possesses two sets of stationary points: a)

one set are strictly solenoidal and are the physical modes of the

cavity; b) the second set, governed by (9), are strictly irrotational

nonp-hysical modes whose resonant frequencies increase linearly

with the square root of the parameter s. These are the spurious

modes previously noted [6], [7]. As s approaches zero, there will

be infinitely many of these modes with vanishingly small

frequency—this is what causes the trouble with the unmodified

(s= O) functional.

(It remains to be proven that the modified functional possesses

no other solutions; the numerical results of the following sections

suggest that it does not.)

Note that all of the above holds equally if we want to compute

the electric field in a cavity containing variable-permeability

materials, with a relative perrnittivity of 1.0; the functional is the

one given by (2) and (5), but with c replacing w and E replac-

ing H.

III. FINITE-ELEMENT SOLUTION

The stationary points (A, k) of (5) may be found approxi-

mately by the finite-element method. The following is similar to

the numerical procedure given in more detail in [5].

The region Q is broken into tetrahedral finite elements (see

Fig. 1). In each element, the field H is approximated by a set of

polynomials complete to order n (orders 1 to 3 have been

implemented). Thus, for an n th -order tetrahedron
nO

(lo)

no=(n+l)(n +2)(n +3)/6

{=(fl,~2~~3,14)

– simplex coordinates of point r—

am(K) = appropriate interpolation polynomials.

For details of the simplex coordinates and interpolation poly-

nomials, see [12]. Hm is the field at the m th node of the element;

the nodes are spread through the element in a regular way (see

Fig. 1).

The field is expressed in this manner in each element and

nodal values are matched up at element interfaces. Then boundary

conditions of the kind (1) and (6) are imposed. Currently, these

may only be imposed on planes perpendicular to a Cartesian

coordinate axis of the problem, but future developments will

allow for more general boundaries. Suppose there are, finally, a

total of N free field components at rdl the nodes of the region Q.

These free field components can be represented by a column

vector H=, and (5) becomes (after some algebra)

FM= HCTWIHC+ SHCTW2HC– k2H:W3Hc (11)

where WI, W2, and W3 are N X N symmetric matrices.

Now since Fm must be stationary with respect to H,

(W1+sW2)Hc=k2W3Hc (12)

which is a generalized algebraic eigenvalue problem for (Hc, k2 ).

IV. TEST CASE: EMPTY Box

As a simple example, consider the problem of finding the

resonant modes of the empty rectangular cavity Q shown in Fig.

2. The walls 6’!J of the cavity are perfectly conducting, so the

governing equations for the electric field are

The analytical solution to this problem is well known [13]; it

consists of two sets of modes labelled TE~~P and TM~nP. The

first set of modes have no z-component of electric field; the

second set, no z-component of magnetic field. m, n, and p are

nonnegative integers. The corresponding resonant frequencies are

(kz=rz ???+< )+@.
a2 b2 C2

(14)

In solving (13) with the electric-field version of the functional (5),

we compute also a set of spurious solutions, whose governing

equations are (from (9))

svv. E+k2E=0 in fl (15a)

V.k=o on aa= anD. (15b)

The analytical solution to this problem may readily be found: it

consists of a single set of modes labelled S~~P, with correspond-

ing resonant frequencies given by

(16)

The modes S~~P are only nonzero if m, n, and p are all positive.

The problem was solved using the finite-element method de-

scribed above, with 135 second-order tetrahedral. Table I gives the

first six modes computed from this model, together with the

analytical solution from (14) and (16).
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Fig. 2. Tbe first six computed values of kz (0), plotted ag~nst tie pw~etem S, for aII empty rect~g~ar box (~set); ~~Ytic res~ts

(— ) were obtained from (14) and (16).

TABLE I.

RESONANT FIU?QUENCIES k (rads/m) FOR THE FIRST SIX MODES

OF THE RECTANGULAR CAVITY SHOWN IN FIG. 2; s = 0.4

Finite Mode Analytical Percent

Element Sol ut i on Error

Solution

2. a94h #
111

2.8666 0.9

3.2799
‘“llo

3.2716 0.3

3. 7e43
‘Elo 1

3.7757 0.2

3. 79s4 d=
211

3.6733 3.3

4.0320
T%ll

4.0232 0.2

4.0973 +2, 3.9760 3.1

Fig. 2 shows the effect of varying s: the spurious values of k=
vary linearly with s, while the true modes are unaffected bys.

V. DIELECTRIC-LOADBDBox

An irreducibly three-dimensional problem shown in Fig. 3 was
solved using 135 seeond-order tetrahedr~ at s =1.5, for a variety
of values of the ratio u/c. Two symmetry plans were used, one
perpendicular to the x-axis and one perpendicular to the z-axis.
The magnetic field was found.
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Fig. 3. One quarter of tbe problem of a dielectric block (relative permittivity
16) in rectangular box. a =1.0 m, b -0.6 m, c = 0.2 m, t = 0.25 m, V== 0.35
m, u varies from 0.0 m to 0.2 m. Tbe walls x = O and z = O are planes of
symrnem the remaining WS23Sof tbe box are perfeet conductors.

In Fig. 4, the resonant frequencies of the first six modes are
plotted against u/c. Table II compares the resonant frequency of
the lowest mode, at u/c= 0.375, with vrdues obtained by diffm-
ent methods. Note that, with the magnetic-field boundary condit-
ions on the conducting e@ty walls, the spurious modes are
different to those of Section IV but just as stmightfmward to
compute in closed form. ‘fliey are labelled S~mP,where now one
of the indices m, n, or p may be zero.

VI. COMPUTATIONAL REMARKS

The algebraic eigenvalue problem (12) is large and sparse and

only the first eigenpairs are required. An efficient method for this

type of problem ia that of trace minimization [14], and a solver
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Fig. 4. The resonant frequencies k of the first six modes of a dielectric-loaded box (Fig. 3); s = 1.5.

TABLE II

RESONANT FREQUENCIES k (rads/m) OF w LOWEST MODE OF

THE DIELECTRIC-LOADED Box SHOWN IN FIG. 3, WITH

u/c = 0.375; s = 1.5

Source Resonant Est i mated

Frequmnc y Percent
Error

Ref. [31 4.907 0.0

Ref. [41 3. S29 < 1.0

Rmf. [S1 s. Sso

This Method !3.621 < 1.0

based on this technique was built and used to obtain the above

results. Typically, the matrices in (12) had dimensions of 400-500,

but because the trace minimization algorithm requires only the

nonzeros of the mattices to be stored in core, it was possible to

obtain the solutions on minicomputers (PERQ and CODATA).

VII. CONCLUSIONS

High-order tetrahedral finite elements have been used to find
the first few resonant modes of dielectric-loaded cavities. The
modified functional [6] has been shown to possess a second set of
nonphysical modes in addition to the physical solutions.

The modified functional approach, although enabling solutions
to be computed, still has the undesirable feature that the opti-
mum value of the parameter s for a particular problem is
unknown, and must be guessed by the user before the computa-

tion begins, or determined by repeated solution (an expensive

process).

APPENDIX

PROOF THAT A SOLUTION TO (8) IS ALSO A SOLUTION TO (7)

Let ~, k2 be a solution to (8). Then, from (8d), since k2 >0,

(8a) gives

V.H=O ina

and it follows that H, k2 also satisfies (7a), (7b), (7c), and (7e).

Furthermore.

and

[1]

[2]

[3]

[4]

(V Afi)An=O ortilfl. *

(:vAti)An=O OnaoN =

( )
VA~VA@ .n=() on aa. -

ii. n=O on r3L?N (from (8a))

so A satisfies (7d) also.

REFf3~NCES

S. J. Fiedzuisko, “Duaf-mode dielectric resonator loaded cavity filters,”
IEEE Trans. Microwave Theoy Tech., vol. MTT-30, pp. 1311–1316,
Sept. 1982.
T. G. Mihmn, “Microwave oven mode tuning by slab dielectric loads,”
IEEE Trans. Microwave Theo~ Tech., vol. MTT-26, pp. 381-3S7, 197S.
M. Albani and P. Bemardi, “A numerical method bssed on the discreti-
zation of Maxwell’s equations in integml form,” IEEE Trans. Microwave

Theo~ Tech., vol. MTT-22, pp. 446-450, Apr. 1974.
S. Akhtmzad and P. B. Johns, “solution of Maxwell’s equations in three
space dimensions snd time by tbe t.1.m. method of numerical analysis,”
Proc. Inst. Elec. Eng., vol. 122, pp. 1344-1348, Dec. 1975.



IEEE TRANSACTIONS ON MfCROWAVE THSORY AND TECHNIQUES, VOL. MTT-33, NO. 7, JULY 1985 639

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

J. P. Webb, G. L. Msile, and R. L. Ferrari, “Finite element solution of
three-dimensional electromagnetic problems: Proe. Inst. Elec. Eng., vol.
130, pt. H, no. 2, pp. 153-159, Mar. 1983.
M. Harz T. Wsd~ T. Frrkasawa, and F. Kikucfd, “Three dimension
rmafysis of RF electromagnetic fields by finite element method: IEEE

Trans. Magn., vol. MAG-19, no. 6, pp.’ 2417-2420, 1983.
J. B. Davies, F. A. Fermmdez, and G. Y. Phifippou, “Finite element
analysis of aff mndes in cavities with eircuku symmetry,” IEEE Trans.

Microwaue Theo~ Tech., vol. MTT-30, pp. 1975-1980, Nov. 1982.
B. M. A. Rabnran and J. B. Davies, “Finite-element anafysis of opticaf
and microwave problems: IEEE Trans. Microwave Theory Tech., vol.

MTT-32, pp. 20-28, Jan. 1984.
Z. J. Csendes and P. Silvester, “Numerieal solution of dielectric loaded
waveguides: I—Finite element snsfysis,” IEEE Trahs. Microwave Theo~

Tech., vol. MTT-18, pp. 1124-1131, Dec. 1970.
A. Konrad, “Vector variations form”idation of electromagnetic fields in
anisotropic medih” IEEE Trans. A4icrbwaue Theoty Tech., VOL MTT-24,

PP. 553-559, 1976.
A. D. Berk, “Variational principles for electromagnetic resonators and
waveguides,” IRE Trans. Antennas Propagat., VOL AP-4, pp. 104-110,
Apr. 1956.
P. Silvester and R. L. Ferrari, Finite Elements for Electrical Engineers.

Cambridge, Eirrgfand: Cambridge University Press, 1983.
S. RSMO, J. R. Wbinnery, and T. Van Duzer, Fields and Waues in

Communication Electronics. New York: Wiley, 1965.
A. H. Sameh and J. A: Wisniewsl& “A trace of minimization algorithm
for the generalized eigenvalue problern~ SIAM J. Numer. Anal., -vol. 19,

no. 6, pp. 1243-1259, Dec. 1982.

Large-Signal Microwave Performance Prediction of
Dual-Gate GaAs MESFET Using an Efficient and

Aeeumte Model

ASHER MADJAR, SENIOR MSMBER, IEEE,

AND JONA DREIFUSS

Abstract —This paper presents a mi~wave large-signal model for the

dual-gate MJKWE.T. ‘flte model enables prediction of device performance

in small-signaf and large-signal eireuits. The model is an extension of a

previously developed model for the ordinary MEWET. It refies on basic

principles, thus correlating the device geometry and physicaf parameters to

its performance. The speed and aeasraey of the model are demonstrated by

ealcukting three types of device performance dc cnrve~ smefl-signaf

scattering parameters, and huge-signat simulation of ass anspfifier. G&d

agreement was achieved between cafcufated and measured perfoitnance.

The computed results are presented for comparison onfy, and no attempt

was made to present a comprehensive analysis of the device performance.

I. INTRODUCTION

Increasingly, dual-gate GRAS MESFET devices are finding use

in microwave circuits. In recent years, many researchers have

investigated the device properties and applications. The most

useful applications which have emerged thus far are: AGC

amplifiers, mixers (including self-oscillating) [1]-[3], active phase

shifters [2], [4], frequency multipliers [2], [5], power

combiners/dividers [6], and up converters [7].

Small-signal circuits can be conveniently analyzed and design-

ed by use of measured scattering parameters. However, in most

of the above applications, the device operates in a large-signal

mode. Large-sigxial circuits can be built, of course, experimen-

tally, but this involves much “cut and try” effort. The best

approach to nonlinear circuit development is to design the circuit

Manuscript received February 21, 198A revised February 11, 1985.
The authors are with RAFAEL, Electronics Division, P.O. Box 2250, 31021

Haifa, Israel.
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Fig. 1. Dual-gate MESFET cross-section view.

theoretically (approximate design is ustiallY accmtable), build it,

and fine-t&e- ii ~o the desired performanc& This_latter approach
requires an efficient and reasonably accurate model for the
device.

This paper presents such a model for the dual-gate MESF13T.
Its speed and accuracy are demonstrated by calculating the
device performance and compting it to the’ measured perfor-
mance presented in the manufacturer’s data sheet.

II. DEVICE STRUCTURE

The physical structure of the device is presented in Fig. 1. As

showq, the structure is similar to an ordinaiy FET except for the

two gates. The device is built on a semi-insulating substrate of

GaAs. An n-type epitaxial active layer is growD on the substrate,

and on top of it an n+ layer. The source and drain electrodes

form ohmic contacts to the GaAs materi@, while the two gate

electrodes form Schottky-barrier junctions.
From Fig. 1, it is obvious that this device is basically a

combination of two ordinary MESFET’S. In fact, Asai et al. [8],
[9] have shown that electrically this device is a cascade correc-
tion of two ordlinary FET’s, the first in a common-source mode
and the second in a common-gate mode. (See Fig. 3(a)).

III. THE MODEL

An efficient and accurate microwave large-signal model for the

ordinary ME?SFET was developed by Madjar and Rosenbaum

[10]-[12]. This model was developed using basic principles,

namely, solving the electric-field problem in the detice in an

approximate analytical fashion. This approach yielded a model

which has advantages in all respects: it is fast, it related the

physical device parameters to its electrical performance, and it

has reasonable accuracy. The exact details of the model are

presented in the above references.

The circuit diagram of an ordinary assembled FET is presented

in Fig. 2. The “box” in the center of the diagram represents the

active part of the device. This part is characterized by the

computer model as follows:

(1)
dk’s~(t)

+fwllsdvyjt~IJ~) = GVSG ~t

d&(t)
1~( t) = .lWO+ DVSG dt +DVDSdv~(r) . (2)

& and the four capacitive coefficients are functions of P&., V~X
and are computed by the model.

The other components in Fig. 2 are parasitic elements, which
are undesirable but must be taken into account. The two diodes
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